本文提出的K-medoids噪点预处理算法实现步骤如图5所示:其中步骤1为数据的采集:调整相机位姿采集轮廓圆数据;步骤2为数据分组,将轮廓数的英语翻译

本文提出的K-medoids噪点预处理算法实现步骤如图5所示:其中步骤

本文提出的K-medoids噪点预处理算法实现步骤如图5所示:其中步骤1为数据的采集:调整相机位姿采集轮廓圆数据;步骤2为数据分组,将轮廓数据按顺序平均分成3组;步骤3为数据转换:通过三点拟合圆将轮廓数据转换到圆心附近;步骤4为聚类分析:通过K-medoids聚类算法聚类转换后的数据;步骤5为聚类中心的选择:根据聚类数目(有效点远大于噪点)可判定有效点的聚类中心,通过映射记录有效轮廓点数据,剔除轮廓噪点。
0/5000
源语言: -
目标语言: -
结果 (英语) 1: [复制]
复制成功!
The implementation steps of the K-medoids noise preprocessing algorithm proposed in this paper are shown in Figure 5: Step 1 is data collection: adjust the camera pose to collect contour circle data; Step 2 is data grouping, and the contour data is divided into 3 groups in order and equally ; Step 3 is data conversion: the contour data is converted to the vicinity of the center of the circle by fitting a circle with three points; Step 4 is cluster analysis: clustering the converted data by K-medoids clustering algorithm; Step 5 is the selection of the cluster center : According to the number of clusters (the effective points are much larger than the noise points), the cluster center of the effective points can be determined, and the effective contour point data can be recorded by mapping to eliminate the contour noise points.
正在翻译中..
结果 (英语) 2:[复制]
复制成功!
The implementation steps of k-medoids noise preprocessing algorithm proposed in this paper are shown in Figure 5: Step 1 is data acquisition: adjust the camera pose to collect contour circle data; Step 2 is data grouping, and the contour data are evenly divided into three groups in order; Step 3 is data conversion: convert the contour data near the center of the circle through three-point fitting circle; Step 4 is cluster analysis: cluster the transformed data by k-medoids clustering algorithm; Step 5 is the selection of cluster center: the cluster center of effective points can be determined according to the number of clusters (effective points are much larger than noise), and the effective contour point data can be recorded through mapping to eliminate contour noise.
正在翻译中..
结果 (英语) 3:[复制]
复制成功!
The implementation steps of the K-medoids noise preprocessing algorithm proposed in this paper are shown in Figure 5: step 1 is data collection: adjusting the camera pose to collect contour circle data; Step 2, data grouping, namely, dividing contour data into three groups on average in sequence; Step 3 is data conversion: the contour data is converted to the vicinity of the center of the circle through three-point fitting circle; Step 4 is clustering analysis: clustering the converted data by K-medoids clustering algorithm; Step 5 is the selection of cluster centers: according to the number of clusters (the number of effective points is much larger than the noise), the cluster centers of effective points can be determined, and the data of effective contour points can be recorded by mapping to eliminate contour noise.
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: