第1种方法,为了进一步验证各输入因子与输出因子间的线性相关性,提出了一种融合灰色关联与线性回归的成纱质量预测方法。该方法根据纱线各质量指标与的英语翻译

第1种方法,为了进一步验证各输入因子与输出因子间的线性相关性,提出了一

第1种方法,为了进一步验证各输入因子与输出因子间的线性相关性,提出了一种融合灰色关联与线性回归的成纱质量预测方法。该方法根据纱线各质量指标与关键工艺因素、原棉质量因素的关联度系数,选出系数较大的影响因素作为模型的输入变量,以此提高输入变量与输出变量间的线性相关度,减小预测数据的误差,提高预测数据精度。
0/5000
源语言: -
目标语言: -
结果 (英语) 1: [复制]
复制成功!
In the first method, in order to further verify the linear correlation between each input factor and output factor, a yarn quality prediction method combining grey correlation and linear regression is proposed. This method selects the influencing factors with larger coefficients as the input variables of the model according to the correlation coefficients of yarn quality indicators with key process factors and raw cotton quality factors, so as to improve the linear correlation between input variables and output variables Small errors in forecast data, improve the accuracy of forecast data.
正在翻译中..
结果 (英语) 2:[复制]
复制成功!
The first method, in order to further verify the linear correlation between the input factors and the output factors, a method of yarn quality prediction that combines gray correlation with linear regression is proposed. Based on the correlation coefficient between each quality index of yarn and key process factors and raw cotton quality factors, this method selects the influencing factorwiths with large coefficients as the input variables of the model, so as to improve the linear correlation between the input variables and the output variables, reduce the error of the prediction data and improve the accuracy of the prediction data.
正在翻译中..
结果 (英语) 3:[复制]
复制成功!
In the first method, in order to further verify the linear correlation between the input factors and the output factors, a yarn quality prediction method combining grey correlation and linear regression is proposed. According to the correlation coefficient of yarn quality index, key process factors and raw cotton quality factors, the influential factors with larger coefficient are selected as the input variables of the model, so as to improve the linear correlation between input variables and output variables, reduce the error of prediction data and improve the accuracy of prediction data.<br>
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: