变量之间提取的公因子方差越大,则表明被公因子解释的能力更强,而提取的公因子方差提出的变量因子被解释的程度均高于70%,因此,提取效果好,原始的英语翻译

变量之间提取的公因子方差越大,则表明被公因子解释的能力更强,而提取的公

变量之间提取的公因子方差越大,则表明被公因子解释的能力更强,而提取的公因子方差提出的变量因子被解释的程度均高于70%,因此,提取效果好,原始数据损失的信息较少。通常而言对于不低于75%的方差贡献率,因子提取成分解释信息占总信息的75%。对于特征根大于1的因子,基于SPSS软件进行数据分析,最终得到三个因子,如下表所示:
0/5000
源语言: -
目标语言: -
结果 (英语) 1: [复制]
复制成功!
Extraction larger common factor between the variance of the variables, it indicates the ability to be explained more common factors, and the degree of extraction of variables known factor variance factors are proposed to explain the higher than 70%, thus, good extraction results, the raw data less information loss. Typically for variance contribution rate of not less than 75%, the extraction component factor explained 75% of the total information information. For Eigenvalue factor greater than 1, based on the data analysis software SPSS, finally obtained three factors, as follows:
正在翻译中..
结果 (英语) 2:[复制]
复制成功!
The greater the variance of the common factor extracted between variables, the greater the ability to be interpreted by the male factor, while the variable factor proposed by the extracted common factor variance is interpreted to a higher than 70%, so the extraction effect is good and the information of the original data loss is less. In general, for a variance contribution rate of no less than 75%, the factor extraction component interpretation information accounts for 75% of the total information. For factors with a feature root greater than 1, data analysis is based on SPSS software, resulting in three factors, as shown in the following table:
正在翻译中..
结果 (英语) 3:[复制]
复制成功!
The larger the variance of common factors extracted between variables, the stronger the ability to be interpreted by common factors, and the degree of variable factors proposed by the extracted common factor variance to be interpreted is higher than 70%. Therefore, the extraction effect is good, and the information of original data loss is less. Generally speaking, for variance contribution rate of no less than 75%, factor extraction component interpretation information accounts for 75% of the total information. For factors with feature root greater than 1, data analysis is conducted based on SPSS software, and three factors are finally obtained, as shown in the table below:<br>
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: