深度学习是一种高效且准确的机器学习方法。由于计算机的快速进步和算法的提高,使得近年来深度学习的发展突飞猛进。垃圾图像是一种特征复杂并且类别多的英语翻译

深度学习是一种高效且准确的机器学习方法。由于计算机的快速进步和算法的提

深度学习是一种高效且准确的机器学习方法。由于计算机的快速进步和算法的提高,使得近年来深度学习的发展突飞猛进。垃圾图像是一种特征复杂并且类别多样的图像,导致其提取复杂,识别繁冗。一般用传统的数字图像识别方法去识别垃圾图像,运行量大并且准确率低下。本文使用了基于深度学习的数字图像识别模型来对垃圾图像进行识别分类,并使用其他模型进行准确率对比,并对模型进行改进。论文的主要内容有:(1)论述深度学习的相关理论。(2)论述数字图像识别的相关理论。(3)研究基于深度学习的EfficientNet数字图像识别模型,介绍模型的相关算法和相关理论,并进行对比实验,改进模型。
0/5000
源语言: -
目标语言: -
结果 (英语) 1: [复制]
复制成功!
Deep learning is an efficient and accurate machine learning method. Due to the rapid progress of computers and the improvement of algorithms, the development of deep learning has made rapid progress in recent years. <br>The junk image is an image with complex features and diverse categories, which leads to complex extraction and cumbersome recognition. Traditional digital image recognition methods are generally used to identify junk images, which has a large amount of operation and low accuracy. In this paper, a digital image recognition model based on deep learning is used to identify and classify garbage images, and other models are used to compare accuracy and improve the model. The main contents of the paper are: <br>(1) Discuss the relevant theories of deep learning. <br>(2) Discuss related theories of digital image recognition. <br>(3) Study the EfficientNet digital image recognition model based on deep learning, introduce the relevant algorithms and theories of the model, and conduct comparative experiments to improve the model.
正在翻译中..
结果 (英语) 2:[复制]
复制成功!
深度学习是一种高效且准确的机器学习方法。由于计算机的快速进步和算法的提高,使得近年来深度学习的发展突飞猛进。<br>垃圾图像是一种特征复杂并且类别多样的图像,导致其提取复杂,识别繁冗。一般用传统的数字图像识别方法去识别垃圾图像,运行量大并且准确率低下。本文使用了基于深度学习的数字图像识别模型来对垃圾图像进行识别分类,并使用其他模型进行准确率对比,并对模型进行改进。论文的主要内容有:<br>(1)论述深度学习的相关理论。<br>(2)论述数字图像识别的相关理论。<br>(3)研究基于深度学习的EfficientNet数字图像识别模型,介绍模型的相关算法和相关理论,并进行对比实验,改进模型。
正在翻译中..
结果 (英语) 3:[复制]
复制成功!
Deep learning is an efficient and accurate machine learning method. Due to the rapid progress of computer and the improvement of algorithm, the development of deep learning has made rapid progress in recent years.<br>Garbage image is a kind of image with complex features and various categories, which leads to complex extraction and recognition. Generally, the traditional digital image recognition method is used to recognize the garbage image, which has a large amount of operation and low accuracy. In this paper, the digital image recognition model based on deep learning is used to classify the garbage image, and the accuracy of other models is compared, and the model is improved. The main contents of this paper are as follows:<br>(1) Discuss the theory of deep learning.<br>(2) This paper discusses the theory of digital image recognition.<br>(3) This paper studies the efficientnet digital image recognition model based on deep learning, introduces the related algorithm and theory of the model, and carries out comparative experiments to improve the model.
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: