图5和表1表示不同故障诊断方法运行50次的精度识别结果,从图5中可以看出,当m=3,4,5,6本文方法FFCMPE的识别率是最高的。从表1中的英语翻译

图5和表1表示不同故障诊断方法运行50次的精度识别结果,从图5中可以看

图5和表1表示不同故障诊断方法运行50次的精度识别结果,从图5中可以看出,当m=3,4,5,6本文方法FFCMPE的识别率是最高的。从表1中可以进一步看出m=3、4、5、6时,FFCMPE的识别能力优于FFMPE、SMPE、FFMFE、SCMPE和SMFE5种方法。其中当m=4时,FFCMPE的最高精度识别率达到96.76%,FFMPE、SCMPE和SMPE为较好的识别度,SMFE和FFMFE为最差的识别精度,且FFCMPE比FFMPE、SMWPE、FFMFE和SMFE5种方法分别识别正确率高出8.54%-10.54%,12.53%-15.53%,17.08%-22.69%,26.75%-30.75%,34.84%-39.17%。试验结果验证了FFCMPE在OLTC识别精度方面的优势,以及在特征提取方面的优势,同时FFMPE、SMPE、FFMFE、SCMPE和SMFE5种方法的标准偏差(STD)明显大于MWPE多特征融合方法的标准差,这表明该方法的计算结果具有较好的稳定性。
0/5000
源语言: -
目标语言: -
结果 (英语) 1: [复制]
复制成功!
Fig. 5 and Table 1 show the accuracy recognition results of different fault diagnosis methods running 50 times. It can be seen from Fig. 5 that when m = 3, 4, 5, 6 this method FFCMPE recognition rate is the highest. It can be further seen from Table 1 that when m = 3, 4, 5, and 6, the recognition ability of FFCMPE is better than the five methods of FFMPE, SMPE, FFMFE, SCMPE, and SMFE. Among them, when m = 4, the highest accuracy recognition rate of FFCMPE reaches 96.76%, FFMPE, SCMPE and SMPE are better recognition degrees, SMFE and FFMFE are the worst recognition accuracy, and FFCMPE is more than 5 kinds of FFMPE, SMWPE, FFMFE and SMFE The recognition accuracy of the method is 8.54% -10.54%, 12.53% -15.53%, 17.08% -22.69%, 26.75% -30.75%, 34.84% -39.17%, respectively. The test results verify the advantages of FFCMPE in the accuracy of OLTC recognition and the advantages of feature extraction. At the same time, the standard deviation (STD) of the five methods of FFMPE, SMPE, FFMFE, SCMPE and SMFE is significantly greater than the standard deviation of MWPE multi-feature fusion method. This shows that the calculation results of this method have good stability.
正在翻译中..
结果 (英语) 2:[复制]
复制成功!
图5和表1表示不同故障诊断方法运行50次的精度识别结果,从图5中可以看出,当m=3,4,5,6本文方法FFCMPE的识别率是最高的。从表1中可以进一步看出m=3、4、5、6时,FFCMPE的识别能力优于FFMPE、SMPE、FFMFE、SCMPE和SMFE5种方法。其中当m=4时,FFCMPE的最高精度识别率达到96.76%,FFMPE、SCMPE和SMPE为较好的识别度,SMFE和FFMFE为最差的识别精度,且FFCMPE比FFMPE、SMWPE、FFMFE和SMFE5种方法分别识别正确率高出8.54%-10.54%,12.53%-15.53%,17.08%-22.69%,26.75%-30.75%,34.84%-39.17%。试验结果验证了FFCMPE在OLTC识别精度方面的优势,以及在特征提取方面的优势,同时FFMPE、SMPE、FFMFE、SCMPE和SMFE5种方法的标准偏差(STD)明显大于MWPE多特征融合方法的标准差,这表明该方法的计算结果具有较好的稳定性。
正在翻译中..
结果 (英语) 3:[复制]
复制成功!
Figure 5 and table 1 show the accuracy identification results of different fault diagnosis methods running for 50 times. It can be seen from Figure 5 that when m = 3,4,5,6, the identification rate of ffcmpe method in this paper is the highest. It can be further seen from table 1 that when m = 3, 4, 5 and 6, ffcmpe has better recognition ability than ffmpe, SMPE, ffmfe, scmpe and smfe5 methods. When m = 4, the highest recognition accuracy of ffcmpe is 96.76%, ffmpe, scmpe and SMPE are better, SMFE and ffmfe are the worst, and ffcmpe is 8.54% - 10.54%, 12.53% - 15.53%, 17.08% - 22.69%, 26.75% - 30.75%, 34.84% - 39.17% higher than ffmpe, smwpe, ffmfe and SMFE respectively. The experimental results verify the advantages of ffcmpe in OLTC recognition accuracy and feature extraction. At the same time, the standard deviation (STD) of ffmpe, SMPE, ffmfe, scmpe and smfe5 methods is significantly greater than that of mwpe multi feature fusion method, which shows that the calculation results of this method have good stability.<br>
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: